
P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 42, No. 2, February 2003 (C© 2003)

Debugging the Universe1

Brian Hayes2

Many authors have asked whether our universe can be understood as a kind of computa-
tional process. This paper asks the opposite question: What are the challenges we would
face in writing a program (or, more generally, creating a computation) to implement a
physically plausible universe?

KEY WORDS: computer simulation; computational metaphysics; N-body problem;
cellular automata.

1. INTRODUCTION

The first great age of automata began at the close of the medieval period
and lasted into the Seventeenth century (Mayr, 1986). The technological marvels
of that era were clockwork confections machined from brass and iron—intricate
assemblies of gears, cranks, levers, escapements, and ratchets. The clocks of cathe-
drals and town halls displayed the phases of the moon and the progress of the sun
through the zodiac; animated figures pranced out to strike the hours and entertain
onlookers (King, 1987; Lloyd, 1958; Maurice and Mayr, 1980). There was even
a mechanized doll that took up a quill pen and wrote, “I think, therefore I am”
(Wood, 2002).

From machines that imitate life and the heavens, it is an easy step to the idea
that life itself might be a mechanical process and that the stars could be driven by
some kind of celestial gear train. The vision of a clockwork universe figures in the
thinking of Dante, Galileo, Kepler, and Newton. Yet another exponent of gears in
the sky was Descartes, who also likened animals to mechanical automata. Then
there was Rousseau, who wrote: “I see nothing in any animal but an ingenious
machine, to which nature hath given senses to wind itself up. . . .” Ideas like these

1 This paper is loosely based on a talk given at the Digital Perspectives meeting in Arlington, VA, in
July 2001.

2 Senior Writer,American Scientist; 99 Alexander Drive Research Triangle Park, NC, 27709. USA;
e-mail: bhayes@amsci.org.

277

0020-7748/03/0200-0277/0C© 2003 Plenum Publishing Corporation

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

278 Hayes

were very much in the air a few hundred years ago; and yet, as far as I can tell,
the clockwork universe and the animal-as-automaton were always looked upon
as metaphors rather than literal mechanisms. The universe waslike a clock, but
no one believed that the meshing of brass gears really moved the planets in their
orbits. And Rousseau knew that if he were to open up a living creature, he would
not find a mainspring inside.

Today we live in another age of automata, though ours are mostly made of
silicon rather than brass. The computer is everywhere in our lives, and so we are
predisposed to see the world in terms of computational processes. In particular, if
we seek a mechanistic understanding of the natural universe, we are quick to adopt
the vocabulary of symbolic logic, algorithms, and information theory, taking the
viewpoint that the universe evolves by continually computing its next state. But is
this computational model of the universe just another metaphor—another exercise
in “as if” reasoning—or should it be interpreted more concretely? Some proponents
of the computational universe seem to be fully in earnest when they argue that the
ultimate basis of all physics is algorithmic (Fredkin, 1990, 1992, 2002). Others are
hesitant or coy on this point, leaving open the possibility that the whole notion is
merely a useful fiction, a manner of speaking or thinking (Ilachinski, 2001; Minsky,
1982; Noyes et al., 2001; Schmidhuber, 1997; Wolfram, 2002; Zuse, 1982). And
there is a third faction that says the idea is not merely wrong but impossible
(Dreyfus, 1972; Penrose, 1989).

Popular culture has added another layer of confusion to this much-muddied
subject. For example, three recent films depict characters who discover that their
world is some kind of computer-generated simulation, or who step into such a
simulation and then have a hard time finding their way out (eXistenZ; The Matrix;
The Thirteenth Floor). If stories of this kind are representative of what is meant by
the term “computational universe,” then the subject may well lie beyond the reach
of scientific discourse. Asking whether we are bit players in someone else’s virtual
reality—or someone else’s screen saver—is no more fruitful than asking if we are
figments of the Red King’s dream (Dodgson, 1960). The question is metaphysical.
(On the other hand, Hans Moravec tells a fable of creatures inside a computational
world whodomake the discovery that they live inside a program. They somehow
escape this predicament and become colleagues of their creator. (Moravec, 1988))

Let us set aside for now these more flamboyant visions of a computer-
generated world. To suppose that the universe is a computational process does
not have to imply an intelligent design, or a computation performed for some def-
inite purpose, or the existence of a master programmer who pressed “Enter” on a
cosmic keyboard to set the whole works in motion. All that is required is that the
ultimate laws of nature have an essentially algorithmic character. If the universe is
computational, then at some level all events can be described in terms of a finite set
of elementary, deterministic operations suitable for execution by a Turing machine
or some other automation. The process of discovering these computational laws of

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 279

nature—the instruction set of the computational universe—becomes the primary
aim of physics, which is thereby transformed into a kind of reverse engineering.

Reverse engineering is a formidable challenge. In the present context, it means
taking the output of a computation and inferring or reconstructing the program
that generated the output. This inductive process is particularly difficult when
you don’t know whether a solution exists (the output might not be the product of
any computation at all) or whether the solution is unique (many programs might
have the same output). To cite the most obvious instance of the latter problem,
the astrophysical “programs” suggested by Ptolemy, Copernicus, Kepler, Newton,
and Einstein embody very different algorithms, but they were all meant to explain
essentially the same data.

The obvious alternative to reverse engineering is forward engineering: Instead
of trying to infer the internal structure of nature’s program by examining its output,
we can write a program of our own, aiming to produce a world something like
the natural one. Forward engineering is no cinch either. The task amounts to
nothing less than creating a universe—writing a computer program whose output
is the physics of some believable world. But this synthetic approach has one key
advantage: When we build a computational world of our own, we know in advance,
beyond all doubt, that the physics of that world is computable down to the last
detail. There can be no spooky indeterminism or supernatural mental intuitions in
this created world (unless we put them there, in which case they won’t seem very
spooky or supernatural). And if something puzzling or unexpected does turn up in
the model universe, we can track it down in the source code—we can debug the
universe. In sum: A universe we make is a universe we canknow.

There is another advantage to the synthetic approach. If we try to imagine the
details of a program that might be running our own universe, there is no avoiding
some rather difficult physics. For example, any computational universe inconsistent
with relativistic quantum field theories would be a nonstarter. But when we set out
to build worldsde novo, we can make them as simple as we wish. In particular,
we can build a purely classical universe, based on the physics of Newton and
Laplace—or on the physics of Aristotle, for that matter. In most of what follows I
shall assume that the computed world is indeed a simple place.

2. GROUND RULES

In a sense, the trouble with building a do-it-yourself universe is that it’s too
easy. Playing in your own sandbox, you can get away with almost anything; you
can make up whatever laws of nature please your fancy. Criteria for judging the
success of such a project tend to be disappointingly subjective and aesthetic. There
are too few constraints.

These criticisms are serious ones, and need to be borne in mind. But it is
not quite true that we can do anything we want when we invent a computational

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

280 Hayes

universe. The computational process itself imposes a few constraints. Assuming
that the programmed universe is to run on a machine something like the ones we
know today, here are two rules that cannot be violated:

• No continuum.Because we have only finite computational resources avail-
able, all quantities in the model universe must be of finite magnitude, and
they can be computed with only finite precision, or else selected from fi-
nite sets. Of particular importance, space and time must have some kind
of discrete structure, so that coordinates can always be expressed with no
more than a finite amount of information. Philosophers may continue to
debate the status of the continuum in our own world, but for any universe
that fits inside a computer we know how to build, the issue is settled.
• No randomness.Because the logical structure of our computers is strictly

deterministic, so are all the events that take place in the computed universe.
The chain of causality may be arbitrarily tangled, but in principle it can
always be traced. The only way around this restriction would be to import
randomness into the model from our own world—borrowing it from some
source that we do not fully understand ourselves. For present purposes I
regard this as a form of cheating (since the universe created is not entirely
specified by the program), and I assume it will not be done.

Common sense suggests a few more constraints, which we may choose to
impose on ourselves. There is nothing mandatory about these rules—it’s easy to
imagine a computational universe that would not observe them—but without them
the game of computational cosmogony is not very interesting.

• No miracles.Like the original clockwork universe, this one is to be set
ticking and then left to evolve on its own. The programmer is not allowed
to intervene in its operation. A stronger version of this rule insists that only
the simplest and most elementary events are to be specified directly in the
model; everything else must be an emergent phenomenon. For example,
the model might spell out how elementary particles interact to build nuclei
and atoms, but the agglomeration of the atoms to form molecules and larger
structures would not be separately specified.
• No shortcuts.Any approximations or simplifications built into the program

become exact laws of nature in the computed world. So do any numerical
roundoff errors. If calculations are done with IEEE floating-point arith-
metic, then scientists in the computed universe will find that nothing can
be measured with more than 16 digits of precision. The no-shortcuts rule
has an interesting interaction with the no-continuum rule: In general we
think of1x/1t as an approximation todx/dt, which becomes exact only
in the limit where1x and1t go to zero. But in this context there must
be some nonzero1x and1t that give exact results. Differential equations

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 281

become approximations to finite-difference equations, rather than the other
way around.
• No peeking.The state of the world at timet can depend only on events at

times prior tot . The program will not look into the future and use what it
learns there to reconstruct the past. There are arguments for imposing an
even stronger condition: At each instantt , the program must calculate the
state of the world at timet + 1 based solely on the state att . “Leapfrogging”
of information fromt − 1 to t + 1 is forbidden. The point of these restric-
tions is to enforce a mode of computation in which the state of the world
evolves or unfolds, one instant at a time, just as we perceive our own exis-
tence. Note that the no-peeking rule has nothing to say about time-reversal
symmetrywithin the computed universe. Microscopic events, such as par-
ticle collisions, might well be reversible; but the program computing these
events cannot jump forward and backward in time.

The kind of program envisioned here is not asimulationof physics but an
implementationof it. The distinction has to do with both method and intent. For
example, a simulation of the dynamics of matter in a galaxy might well oper-
ate in a “collisionless” regime, where stars interact through long-range forces but
never touch one another—even if they happen to pass through the same point of
space at the same instant. As long as the density of stars is not too high, this
simplification has little effect, and the simulation can still make quite accurate
predictions. But the idea behind the computational universe is not just to make
correct predictions but to identify correct mechanisms. We want verisimilitude
as well as accuracy. It’s not enough that the output of a program mimic natural
phenomena. We should also be able to look inside the program, at the under-
lying algorithms and data structures, and say, “Yes, nature could do it that way
too.”

In what follows I discuss two broad approaches to building a computational
universe, one scheme based on the dynamics of elementary particles and the other
on the wavelike mechanics of cellular automata. I compare these computational
models primarily by asking questions about the programs themselves, not about
the universes they generate. In other words, I am evaluating them according to the
criteria of computer science, not those of physics.

3. PARTICLE MECHANICS

The conceptual framework that has dominated physics for the past 150 years
or more suggests that the most fundamental entities are pointlike particles, which
interact with one another by means of forces or fields. This notion is so deeply
entrenched in modern consciousness that you need a pretty good reason before you
set it aside and choose some other way of thinking about the world. Thus particles

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

282 Hayes

and fields are probably the most obvious candidates for basic building blocks of a
computational universe.

The simplest version of the particle-and-field universe is purely Newtonian.
A particle is a dimensionless object with an exactly defined position and velocity
and a few other invariant properties such as mass and electric charge; once we
have catalogued these features, there is nothing more to be said about the particle.
In other words, a particle can be fully described in a data structure something like
this:

particle
has

rest-mass (constant of type rational)
electric-charge (constant of type rational)
spin (constant of type rational)
x-position (variable of type rational)
y-position (variable of type rational)
z-position (variable of type rational)
x-velocity (variable of type rational)
y-velocity (variable of type rational)
z-velocity (variable of type rational)

It is worth emphasizing what’snotpresent in this data structure. The particle
knows its current coordinates and velocity, but not any higher derivatives of these
dynamical variables, and it carries around no explicit record of its past states.

If we ignore all interactions between particles, then a very simple program will
suffice to run a universe of this kind. At each time step, the program has to update
the position and velocity components of each particle; in fact only the positions
can chage, because the absence of interactions means there are no accelerations.
For a universe withn particles, such a program has running time proportional ton
on a sequential computer. In a parallel machine withn processors, the running time
is constant (regardless of the computer’s architecture; there is no communications
overhead). This parallel implementation is particularly appealing if we choose to
imagine that the particles themselves are the processors, continually calculating
their own trajectories; then the number of processors is automatically matched
to the computing load, even if particles are created or annihilated from time to
time.

On the other hand, although the computational model is well behaved, the
universe it describes is a very dull place. Nothing ever happens there. The particles
sail gracefully on their geodesic paths, oblivious of each other’s presence. If we
want to see any action, we needinteractions.

Interactions can be added to the model in any of several ways, such as by
introducing direct pairwise forces, or by having the particles generate and respond

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 283

to fields. But first consider an even simpler scheme: a universe of billiard-ball
particles, which interact with one another only when they come into direct, tan-
gible contact. Thus the physics of interactions reduces to detecting collisions and
predicting the geometry of the rebound paths (which are always geodesics between
collisions).

In the world we live in, collision detection doesn’t seem like much of a
challenge. You don’t need to do any computing at all to know when you’ve stubbed
your toe. Likewise, real billiard balls require no instrumentation or intelligence
to detect each other’s presence; they simply obey the “law of nature” that says
two solid bodies cannot occupy the same space at the same time. Ideally, objects
in the computational universe would behave in the same way—they would be
endowed with the property of solidity, and thus they would automatically rebound
from obstacles—but such autonomy of action is not to be found in worlds of our
creation. When you build a computational universe, nothing falls to earth unless
you remember to turn the gravity on. Nothing bounces unless you tell it exactly
where and when to bounce. Translating this principle into the idiom of computer
programming, collisions do not generate an interrupt; you have to poll to detect
them.

For dimensionless particles moving through a discrete space-time, it’s not
even entirely clear how best to define a collision. One choice is to say that two
particles collide when they lie at the same point in the lattice of spacetime coordi-
nates. Then detecting a collision between particlesu andv is just an equality test
on the coordinates:

(ux = vx) ∧ (uy = vy) ∧ (uz = vz)

This scheme has the virtue of simplicity, but it offends against the intuition that
two solid bodies cannot be at the same place at the same time. The alternative
is to consider two particles as having collided whenever they reach adjacent sites
in the lattice. (In statistical mechanics this is known as a hard-core lattice gas.) Here
the collision–detection routine becomes somewhat more convoluted. On a cubic
lattice, the particles have to evaluate an expression that looks something like this:

((ux = vx) ∧ (uy = vy) ∧ ((uz = vz− 1)∨ (uz = vz+ 1)))∨
((ux = vx) ∧ ((uy = vy − 1)∨ (uy = vy + 1))∧ (uz = vz)) ∨
(((ux = vx − 1)∨ (ux = vx + 1))∧ (uy = vy) ∧ (ux = vz))

Even if the collision-detection procedure can be made trivially easy, adding
it to the programmed universe has grave effects on the overall computational
complexity of the process. For a universe withn particles, detecting all collisions
requiresn(n− 1)/2 operations at each time step; in other words, the algorithm has

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

284 Hayes

O(n2) complexity on a sequential computer.3 Moreover, providing one processor
per particle does not reduce the computation to constant running time. For that
we would need one processor for eachpairing of particles, which is not a concept
that maps neatly into any obvious computer architecture. Because of this quadratic
complexity, a universe with collision detection will run faster or slower as particles
are created or annihilated. Just think: Somewhere in the computed universe there’s
a burst of matter–antimatter creation, and here in our world the dynamos groan
and the lights dim as the machine takes up the added computational load.

Of course a universe full of hard-core-repulsive billiard balls is probably
not the model we most want to study anyway. Of greater interest are theories
where particles exert long-range attractions or repulsions on one another. But
introducing those forces certainly doesn’t make the computation any easier. In
the na¨ıve algorithm for thisn-body problem—based on pairwise interactions—the
quadratic complexity remains: Every particle has to consider forces generated by
every other particle. The na¨ıve algorithm is not the only possible choice here; there
are many other approaches (Blelloch and Narlikar, 1997, Graps, 2000). Most mesh
and tree methods (Barnes and Hut, 1986) haveO(n logn) complexity, and the fast
multipole method (Greengard and Rokhlin, 1987) is usually described asO(n).
(But see (Aluru, 1996) for a dissenting view.) However, attaining these speedups
entails some level of approximation, since the algorithms lump together certain
groups of particles and count only their smoothed or averaged influence. Thus
a universe that is supposed to have an inverse-square law of gravitation might
exhibit slightly different behavior when force calculations are performed using
one of these algorithms. Furthermore, the departures from an inverse-square law
would depend on the detailed configuration of the particles. In some cases, the
running time would also vary with the mass distribution, so that, for example, a
universe with dense clusters would go slower than one with matter spread out more
uniformly.4

One entirely valid response to all these concerns over algorithmic complexity
is a shrug and a sigh. Who cares how fast the universe runs? There is no fundamental
reason that the program’s execution time could not be quadratic inn, or even
exponential inn. Any civilization that evolved within the artificial universe would

3 An alternative todetectingcollisions issolvingfor them. Since the particles move in straight lines
at constant velocity, all collisions can be predicted by solving a system of linear equations. But this
procedure is a flagrant violation of the no-peeking rule. Also, the technique may be less efficient than
it seems. After solving for all pairwise collisions, you have to throw away all but the first, since that
collision can alter all subsequent trajectories.

4 Things could be worse. TheO(n2) running time of a classicaln-body algorithm seems quick indeed
compared with the equivalent computation in a quantum-mechanical world. Almost all exact quantum-
mechanical calculations have exponential running time (when performed on a classical computer).
If the wave function of a single particle is specified bym variables, thenn particles require notmn
variables butmn. (Ceperley, 1999)

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 285

never know anything about the rate of its own computation, because the ticking
of clocks inside the program must always remain synchronized with the execution
of the program itself. (We can’t measure the “speed of time” in our universe
either.) Fluctuations in the pace of the algorithm would also be undetectable from
the inside. For that matter, the program could be stopped altogether—keeping the
created world hovering in suspended animation—and then resumed. No one inside
would be any the wiser.

The real objection to quadratic complexity is not an issue of speed or ef-
ficiency. Rather, the quadratic running time is a clue that the program is doing
something “unnatural,” something that we don’t see going on in our own world
and that we’d rather not include in an artificial physics. A program that monitors
all pairs of particles for collisions or that repeatedly measures all pairwise forces
probably has somewhere inside it a big list of all the particles in the universe; the
calculation is essentially an iteration over this list. In the natural world we find no
counterpart of such a data structure. The existence of this master list seems just
as implausible and incongruous as polished brass gears that drive the heavenly
spheres.

What seems most suspect about the particle-mechanics algorithms is their
extreme nonlocality. In these programs, a billiard ball rolling slowly across a
green felt table has to be continually checking the positions of all the other billiard
balls in the universe, lest a collision go undetected. Perhaps this computation
will produce results indistinguishable from the events we observe on real billiard
tables, but it also produces an overwhelming sense that there ought to be an easier
way.

Locality is an even more contentious issue in physics than it is in computer
science, and perhaps a distrust ofO(n2) algorithms in the context of a computa-
tional universe simply mirrors the long debate in physics over action at a distance.
For a time, quantum field theory seemed to offer a formalism in which all inter-
actions could be understood in terms of strictly local events, with forces being
conveyed between particles by the exchange of other particles. A relativistic quan-
tum field theory might also get rid of the fixed frame of reference implied in the
classical computational model of particle mechanics. But there is a steep price to
pay for these improvements: Calculating a single exact interaction between parti-
cles could entail summing an infinite series of Feynman diagrams. Furthermore,
with the constraints imposed by Bell’s inequalities, it’s not at all clear that even
quantum field theories can be made strictly local.

4. WAVE MECHANICS

One way to avoid awkward problems of nonlocality in a computational uni-
verse is to change the locus of computation. Instead of associating processors
with particles, and having each particle ask all the other particles, “Where are

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

286 Hayes

you?,” each site in space becomes a processor, and it asks the neighboring sites,
“Anybody there?” Thus only adjacent sites have to communicate with one another,
and the computation is pleasingly local—or so it seems on first glance. I refer to
this computational scheme as “wave mechanics” because of the way information
propagates from site to site, as if in a discretized wave.

The obvious implementation of this idea is a cellular automaton—an array of
discrete cells communicating with their neighbors and continually executing some
rule or program to update their own state. Systems of this kind were first studied
in detail around 1950 by John von Neumann and Stanislaw Ulam (vonNeumann
and Burks, 1966); Konrad Zuse explored similar themes at about the same time
(Zuse, 1982). Two decades later, John Horton Conway’s Game of Life popular-
ized the concept of cellular automata and gave intriguing evidence of intricate
behavior in these systems (Gardner, 1984). Cellular automata were shown to be an
effective tool for modeling and simulation in the physical sciences by the Informa-
tion Mechanics Group at M.I.T., including Edward Fredkin, Norman Margolus,
Tommaso Toffoli and G´erard Y. Vichniac (Fredkin and Toffoli, 1982; Margolus,
1984; Toffoli, 1982; Tofolli and Margolus, 1987; Vichniac, 1984). Toffoli also
made the important discovery that interesting dynamics can emerge in cellular
automata based on invertible update rules. Later, Stephen Wolfram systematically
explored and classified some of the simplest families of cellular automata, namely
those defined on a one-dimensional lattice, and showed that complex behavior can
be observed even in these systems (Wolfram, 2002).

Cellular automata resemble certain models developed independently in other
areas of physics, such as lattice gases in fluid mechanics, the Ising model and its
many relatives in condensed-matter physics, and the lattice-gauge-theory formu-
lation of quantum field theories. There are also close connections with the study
of symbolic dynamics in mathematics (Lind and Marcus, 1995). The versatility
of the idea underlying all these systems is not surprising, because (as Toffoli has
emphasized) cellular automata can be viewed as a discrete implementation of dif-
ferential equations. This also makes them popular candidates for the substrate of
a computational universe.

In the simplest cases, a cellular automation is built on a geometrically regular
lattice, such as an orthogonal grid, and all the cells are identical: They have the
same finite set of possible states, they communicate with the same fixed set of
neighbors, and they execute the same program to calculate their next state. The
specification of a single cell in such an array might look like this:

cell
has

state (variable of type integer)
neighbors (constant array of type cell)
update-rule (constant of type procedure)

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 287

Note that once you have chosen the topology of the neighborhood and the number
of states per cell, there are only finitely many update rules. Specifically, if a cell
with m possible states considers the states ofk neighboring cells when calculating
its next state, then there aremmk

update rules. This is a large number even for
modest values ofm andk, but still it is finite. In a sense, then, when we build a
cellular automaton we are not designing a universe but simply choosing one from
a list of available models.5

Ideally, there would be a simple and direct mapping from the elements of the
cellular automaton to those of the computed universe. Indeed, the temptation is
almost irresistable to identify the cells of the automaton with discrete volumes of
space in the universe. In other words, each cell corresponds to a specific point or re-
gion in space, and the topological neighbors of the cell are the physical neighbors of
the corresponding region. This vision goes beyond “programmable matter”(Toffoli
and Margolus, 1991) to “programmable space.” Space itself becomes a computa-
tional medium, and the universe computes its own evolution, based entirely on the
repeated evaluation of local update rules. Conservation laws for basic quantities
such as energy and momentum can be built into the operation of the automaton,
and there is also a natural analog of the speed of light, since information cannot
propagate through the lattice any faster than one cell per time step. With a judi-
cious choice of update rule and neighborhood, one might hope to see interesting
behavior emerge at a scale somewhat larger than that of the underlying cells. For
example, there might be long-lived, coherent patterns of excitation resembling
waves or particles.

Over the years, a variety of cellular automata have been proposed as models
of fundamental physics in our universe—and have been met with equally varied
criticisms. One frequent objection is that the finite symmetries of the underly-
ing lattice would show through in macroscopic observations, whereas our actual
world appears to be isotropic to high precision (and special relativity impliesexact
isotropy). Those who argue for cellular automata as realistic models of physics
must answer these criticisms (and indeed responses have been offered), but the is-
sue is of little relevance here, where we are constructing a computational universe
of our own design. If the regularities of the lattice show through in the fabric of
such a universe, so be it.

Instead of focusing on the physics of the cellular-automaton universe, I want
to consider a few aspects of its computation or implementation. One immediate
observation is that issues of time complexity are less troublesome here than in
a universe based on particle dynamics. Whereas the time needed to update the
positions and velocities of interacting particles is a nonlinear function of the num-
ber of particles, the computational load in a cellular automaton should be directly

5 Of course the same argument applies to any system with a finite number of components interacting
in finitely many ways, but the countability is seldom so clear as it is in cellular automata.

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

288 Hayes

proportional to the number of cells (and perhaps also to the size of the neighbor-
hood). Given the obvious parallel implementation, with one processor per cell, the
running time per update should be a constant, regardless of the number of cells.
Furthermore, the running time is independent of the level of activity in the universe:
There is no worry that the computation will bog down whenever a new galaxy coa-
lesces from primordial chaos. Unfortunately, the program’s constant running time
is achieved by choosing always to do the maximum amount of computing rather
than the minimum: The cellular automaton does just as much work calculating the
next state of a completely vacant universe as one teeming with activity. In the case
of a universe like our own, most of the cells would have nothing much to do most
of the time. Fredkin calls this “the problem of the missing workload”; by his esti-
mate, the capacity of a cellular automaton computer for our universe is greater than
needed by a factor of 1063. “Either something else is going on. . . ,” he comments,
or “God was incompetent on a scale that boggles the mind.” (Fredkin, 1992) Still,
from the standpoint of computational complexity theory, this extravagant “waste”
of resources is of no consequence; it contributes only a constant factor to the run-
ning time, and by the conventions of complexity theory any constant factor, even
1063, reduces toO(1).

A different kind of timing issue—having to do with the synchronization or
sequencing of events in the cellular automaton—is more problematic. To see the
source of this difficulty, it’s necessary to go into some detail about the inter-
nal operation of the automaton. Suppose that each cell displays its current state
by raising one ofm differently colored flags on a mast. Inside the cell is an
algorithmic daemon whose endlessly repeated task is to check the colors ofk
neighboring flags (possibly including its own flag) and to hoist the appropriate
flag on its own mast. The daemon chooses which flag to display by consulting
a table that lists allmk possible combinations of neighboring flags, specifying a
state for each such combination. This lookup table constitutes the cell’s update
function. There are no other inputs to the function apart from the current col-
ors of thek flags in the neighborhood; also, the daemon has no scratchpad for
storing and recalling former states of its own cell or of its neighbors. The only
element of the system that might correspond to the concept of memory is the
state of the cell itself, as visibly encoded in the color of the flag flying from the
mast.

This model seems to be fully explicit and deterministic—and for describing
the behavior of a single cell, perhaps it is. But when you try to apply it to an array of
many cells, something is missing: There is no representation of time. A daemon has
to do everything at once—read the flags of the neighboring cells, consult the lookup
table, raise its own flag. Meanwhile other daemons are simultaneously checking
their neighborhoods and changing their own flags accordingly, which means the
first daemon may need to make another change, and so on. In the terminology of
circuit engineering this is arace condition, and the outcome is indeterminate. (Or,

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 289

more precisely, the outcome is determined by details of implementation we don’t
want to think about—which transistor has a slightly higherβ or a slightly lower
load resistance, etc. These are not the kinds of factors that ought to determine the
fate of a universe.)

The quick cure for this disease is to discretize time.6 We can synchronize all
the daemons by adding a global clock signal, perhaps a bell that rings to tell them
when to begin their observations. But even this device will not quite solve the
problem if the daemons work at different speeds. When the bell rings at timet , the
fastest daemon will immediately survey itsk neighbors—which are necessarily
still displaying signals from timet − 1—and quickly raise its time-t flag. Hence
the neighbors of this cell will see one time-t flag andk− 1 flags left over from
time t − 1. Daemons elsewhere will observe various other combinations of flags,
possibly including indeterminate states in which a cell is displaying two flags at
once or no flag at all. Again, the outcome of the process depends on unspecified
variables in the implementation of the daemon. What’s needed to restore uniformity
and determinism is atwo-phaseclock: a bell that prompts all the daemons to make
their observations and begin the calculation of the next state, followed some time
later by a whistle, which is the signal to raise the flag marking the new state. But
in order to implement this scheme, still more is needed: Each cell must now have
some way of remembering, during the interval between the ringing of the bell and
the blowing of the whistle, which flag it will eventually hoist. In other words, the
state of the cell now encompasses more than just the manifest color of the flag on
the mast; there are also secret variables,7 which affect the behavior of the system
but are not externally observable.

This scheme for synchronizing the daemons adds a fair amount of complexity
to the cellular automaton, and yet it still does not solve all timing problems.
In 1984, Vichniac (Vichniac, 1984) analyzed a version of the two-dimensional
Ising model implemented as a cellular automaton. In this model each cell has two
possible states, interpreted asup anddownspins of the atoms in a ferromagnet.
The neighborhood consists of the cells at the four cardinal compass points, and the
update rule favors configurations in which adjacent cells have the same state (that
is, the spins point in the same direction, as in a magnetized material). With parallel
updating as described above—so that a cell choosing a state for timet sees all four
neighbors at timet − 1—Vichniac observed that the system evolves not toward the
expected low-energy ground state (with uniform spins, either allupor alldown) but
instead toward a physically implausible oscillation, alternating between the two
highest-energy states of the lattice, with checkerboard configurations of opposite

6 By most definitions, the system does not even become a proper cellular automaton until time is made
discrete.

7 A more natural term might be “hidden variables,” but this is misleadingly evocative of the controversy
over hidden-variable theories in quantum mechanics.

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

290 Hayes

upanddownspins. The cause of this anomaly is a runaway feedback loop. In the
checkerboard geometry, eachup cell is surrounded by fourdowncells, and vice
versa. Accordingly, the update rule causes all the spins to flip on every time step.
An up spin changes todown in order to match its neighbors, but meanwhile all
those neighbors have flipped toup.

This blinking-checkerboard pathology is certainly not to be seen as a fatal
flaw of all cellular automata. It is peculiar to the specific update rule of the Ising
model, and even in that case it can be remedied in various ways (such as by
employing sequential instead of parallel update). What is unsettling about this
situation is the way details of the implementation have leaked into the physics.
The original statement of the Ising model says nothing about the order in which
spins interact with one another, and one would prefer that the behavior of the model
be independent of such technicalities. Thinking about events in real ferromagnets
suggests that the root of the problem lies in the excessive abstractness of the model
itself; the spurious antiferromagnetic state would probably not appear in a deeper
and more detailed model, one that took into account thermal fluctuations in the
position and energy of individual atoms, as well as quantum effects. But the option
of choosing a deeper and more detailed representation is not available in the case
of a computational universe, where by definition the program is already operating
at the bottommost level!

Invertible cellular automata with time-reversal symmetry introduce still more
complications. The standard recipe (Toffoli and Margolus, 1990) for creating an
invertible automaton relies on an update rule in which a cell’s state at timet + 1
depends not only on the state of the neighborhood at timet but also on the cell’s
own state at timet − 1. Thus the cell must have some explicit means of storing and
recalling its past state, not just from one clock phase to the next but across a full
cycle of the automaton. The strong version of the no-peeking rule would forbid
such dependence on the past.

Some of the most interesting invertible cellular automata add layers of spa-
tial as well as temporal structure. For example, the Margolus neighborhood
(Margolus, 1984) (the basis of such ingenious models as the billiar-ball com-
puter) relies on two superimposed lattices, which are active on alternate clock
cycles. And the SALT automaton introduced by Fredkin (Fredkin, 2002) re-
quires six clock phases, in each of which the automaton surveys a different
neighborhood.

At this point we have come a long way from the minimalist vision of a cellular
automaton with memoryless elements that locally and autonomously compute their
own next states. To get interesting and well-defined behavior from the system, we
have been compelled to equip each cell with a secret memory of its own history,
and we have put the entire array under the control of a global synchronizing clock.
And in some cases both time and space have been endowed with nontrivial discrete
structures. Do these intricacies make cellular automata less attractive as a basis

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 291

for building a computational universe? This depends on how highly you value
simplicity, or perhaps on how you measure it.

The global clock is surely an uninvited guest in the world of cellular automata.
Having taken pains to create a purely local computational physics, we then intro-
duce a signal that must be broadcast to every point in the universe in every moment
of time. What could belesslocal than that? But the damage is less severe than it
might seem. Although distributing a global clock signal could well be a serious
engineering challenge for the builder of the cellular automaton, the violation of
locality does not carry through to the computed universe. Events at distant sites
may become correlated as a result of the clock (if only in the trivial sense that they
happen at the same time), but the clock signal cannot carry information from one
cell to another.

The introduction of memory in each cell is a more disturbing change. The
“primitive,” memoryless cellular automaton is a device that one can look upon as
a direct mechanization of Laplace’s idea of simple determinism (Laplace, 1820).
At any instant, each cell in the array has a definite state, and the state embodies
everything there is to know about the cell at that moment. If you comprehend the
laws of physics (i.e., the update rule) and you can identify the states of all the cells
at any one moment, then the entire future of the universe is open to you. (If the
update rule is invertible, then the past is also available.) Endowing the cells with
an additional, secret variable—the memory of a past state or the premonition of
a future one—compromises this deterministic purity.8 No longer can you predict
the evolution of the universe from its visible state; you also need access to secret
compartments—you need “root privileges.”9

A plausible riposte to this complaint is that knowing two consecutive states
of a cell is much like knowing the position and velocity of a particle. We routinely
define the state of a particle to include bothx and ẋ—both position and the first
derivative of position. The discretized analogue in the world of cellular automata
would be knowing the statesand also1s, some measure of the change in the state.
Since in facts is a nominal variable for which1s has no clear meaning, by default
we get to knows(t) ands(t − 1). This is an appealing argument, but it does not
quite dispel the mystery of a point in space that somehow remembers its past state.
The position and velocity of a particle are properties we know how to measure
(even if quantum mechanics puts constraints on simultaneous measurements). In
contrast, there is nothing we can do to a point or a region in space that will persuade
it to divulge its history. Points in space simply don’t seem to retain that information.
And where, physically, would they keep it? Perhaps it is also worth mentioning

8 Of course one can redefine the state of the cell so as to include the new variable, making ann-state
automaton into ann× n one, but the change accomplishes nothing unless all the states are outwardly
distinguishable.

9 Matherat and Jaekel, in Ref. (Matherat and Jaekel, 2001), discuss the interesting relations between
causality, determinism and memory, all in the context of synchronous and asynchronous circuits.

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

292 Hayes

that if such secret history bits do exist in our world, then by gaining access to them
we could toggle the direction of time.

5. CLOSING THOUGHTS

The fact that we run into so many obstructions and obscurities when trying
to build the simplest possible computational universe could be considered either
disappointing or intriguing. It might be a clue that the whole undertaking is mis-
guided. Or it might signal the existence of some principle or constraint from which
we can hope to learn something interesting; there may be a good reason that the
most primitive models don’t work as we might want them to.

Nature offers no guarantee that our own universe will be the simplest one
imaginable. Consider the famous quip of I. I. Rabi when the muon was recognized
to be a heavy electron: “Who orderedthat?” The new particle seemed to be a
gratuitous embellishment, unnecessarily complicating the world for no apparent
reason other than to vex physicists. But its existence is a fact not to be argued
with. Perhaps the need for memory and multiphase clocks in a cellular automaton
universe, or forO(n2) algorithms in particle dynamics, should be accepted in the
same spirit.

The one unquestionable benefit of thinking about physics from a computa-
tional point ofview is that it encourages total explicitness. But this benefit may be
lost if algorithms are described only in abstract terms, as if in a high-level pro-
gramming language. Most of the issues discussed earlier become apparent only at
the register-transfer level or in a timing diagram. You cannot write a program for
a computational universe—and fully specify its behavior—without reaching this
level of detail.10

I want to conclude by mentioning one more example of this phenomenon.
In Fredkin’s SALT automaton (Fredkin, 2002), adjacent cells interact exclusively
through one pleasingly simple protocol: They swap their states. This mechanism
is not only maximally local but also automatically enforces a conservation law,
since the exchanged state information is never altered. As an abstraction, “swap”
seems like the ideal primitive operation for a computational universe. Looking at
it more closely, however, there are nagging questions about how best to implement
the swap operation. To exchange the values of cellsA andB, it is not enough to
write a pair of assignment statements,A := B andB := A. If those statements are
executed serially, both cells wind up with the same value (either the original value
of A or that of B, depending on the sequence). If the statements are executed in
parallel, the outcome is indeterminate.

10One might argue, on the contrary, that architectural details of a cosmic computer are totally irrelevant.
As long as the underlying computer is Turing universal, it can emulate any other computer. Fair
enough: But in that case we must be totally explicit about the details of the emulation program.

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 293

The usual remedy for this problem requires some form of auxiliary storage.
With a temporary bufferT , the statements can be rewritten asT := A; A := B;
B := T . This strategy certainly works, but as with other forms of memory, it raises
the question of where the bufferT exists. If it is inside the cells, then again the
state of the cells includes secret variables. If the buffer is external to the cells—
somewhere in the interstices between them—then the universe is more than a
cellular automaton; it has extra parts that need to be included in the description.
Neither choice is a welcome addition to the model.

There is an alternative, usually known as the XOR trick. The values of two
variables can be swapped, without use of auxiliary storage, by a sequence of three
properly arranged bitwise exclusive-OR operations:A := AXOR B; B := AXOR
B; A := A XOR B. As far as I know this idea was first published in the MIT
compendium called HAKMEM (Beeler, Gosper, and Schroeppel, 1972), where it
appears as Item 161, attributed to R. William Gosper. Pehaps this triple-XOR shuf-
fle seems just too cute and clever to be the basis of cosmic evolution at the deepest
level. On the other hand, maybe no one will be surprised to learn that the most fun-
damental laws of physics were dreamed up at meetings of the Tech Model Railroad
Club.

ACKNOWLEDGMENTS

I thank Edward Fredkin and the other organizers and sponsors of the Digital
Perspective meeting for inviting me to participate. I am also indebted to Tommaso
Toffoli, Norman Margolus, G´erard Vichniac, Charles Bennett, and the late Rolf
Landauer for advice, instruction, and even debugging. A few passages in this paper
appeared in a somewhat different form in the earlier publications (Hayes, 1984,
1999).

REFERENCES

Aluru, S. (1996). Greengard’sN-body algorithm is not orderN. SIAM Journal on Scientific Computing
17(3), 773–776.

Barnes, J., and Hut, P. (1986). A hierarchicalO(NlogN) force-calculation algorithm.Nature 324,
446–449.

Beeler, M., Gosper, R. W., and Schroeppel, R. (1972). HAKMEM. MIT AI Memo 239. See Item 161.
Blelloch, G., and Narlikar, G. (1997). A practical comparison ofN-body algorithms. InSpecification

of Parallel Algorithms: DIMACS Workshop, May 9–11, 1994, G. E. Blelloch, K. M. Chandy, and
S. Jagannathan, eds., American Mathematical Society, Providence, RI, pp. 81–96.

Ceperley, D. M. (1999). Microscopic simulations in physics.Reviews of Modern Physics71, S438–
S443.

Dodgson, C. (Lewis Carroll) (1960).Alice through the Looking Glass.In The Annotated Alice(with
intorduction and notes by Martin Gardner), Bramhall House, New York. (Original work published
1871)

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

294 Hayes

Dreyfus, H. L. (1972).What Computers Can’t Do: A Critique of Artificial Reason, Harper & Row,
New York.

eXistenZ, (1999). Directed by David Cronenberg. Distributed by Dimension Films.
Fredkin, E. (1990). Digital mechanics: An informational process based on reversible universal cellular

automata.Physica D45, 254–270.
Fredkin, E. (1992). A New Cosmogony. www.digitalphilosophy.org/newcosmogony.htm
Fredkin, E. (2002).Digital Philosophy.www.digitalphilosophy.org/digitalphilosophy/toc.htm
Fredkin, E., and Toffoli, T. (1982). Conservative logic.International Journal of Theoretical Physics

21, 219–253.
Gardner, M. (1984).Wheels, Life, and Other Mathematical Amusements, W. H. Freeman, New York.
Graps, A. (2000). Amara’s Recap of Particle Simulation Methods. www.amara.com/papers/nbody.html
Greengard, L. (1990). The numerical solution of theN-body problem.Computers in Physics4, 142–

152.
Greengard, L., and Rokhlin, V. (1987). A fast algorithm for particle simulations.Journal of Computa-

tional Physics73, 325–348.
Hayes, B. (1984). Computer recreations: The cellular automaton offers a model of the world and a

world unto itself.Scientific American250(3), 12–21.
Hayes, B. (1999). Computing science: Computational creationism.American Scientist87, 392–

396.
Ilachinski, A. (2001).Cellular Automata: A Discrete Universe, World Scientific Publishing, Singapore.
King, H. C. (1978). Geared to the Stars: The Evolution of Planetariums, Orreries, and As-

tronomical Clocks(In collaboration with John R. Millburn). University of Toronto Press,
Toronto.

Laplace, P. S. (1820).Theorie Analytique des Probabilités. Courcier, Paris.
Lind, D., and Marcus, B. (1995).An Introduction to Symbolic Dynamics and Coding, Cambridge

University Press, New York.
Lloyd, H. A. (1958).Some Outstanding Clocks over Seven Hundred Years 1250–1950, Leonard Hill

[Books] Limited, London.
Margolus, N. (1984). Physics-like models of computation.Physica D10, 81–95.
Matherat, P., and Jaekel, M.-T. (2001). Concurrent Computing Machines and Physical Space-Time.

arXiv:cs.DC/0112020
The Matrix, (1999). directed by Andy Wachowski and Larry Wachowski. Distributed by Warmer Bros.
Maurice, K., and Mayr, O. (eds.) (1980).The Clockwork Universe: German Clocks and Automata,

1550–1650, Neale Watson Academic Publications, New York.
Mayr, O. (1986).Authority, Liberty, and Automatic Machinery in Early Modern Europe, The Johns

Hopkins University Press, Baltimore.
Minsky, M. (1982). Cellular vacuum.International Journal of Theoretical Physics21, 537–551.
Moravec, H. P. (1988).Mind Children: The Future of Robot and Human Intelligence, Harvard University

Press, Cambridge, MA.
Noyes, H. P., Amson, J., Bastin, T., Etter, T., Kauffman, L. H., Kilmister, C. W., and McGoveran,

D. O. (2001).Bit-String Physics: A Finite and Discrete Approach to Natural Philosophy, World
Scientific, Singapore, Series on knots and everything, Vol. 27.

Penrose, R. (1989).The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics,
Oxford University Press, New York.

Schmidhuber, J. (1997). A computer scientist’s view of life, the universe and everything. InFounda-
tions of Computer Science: Potential, Theory, Cognition, C. Freksa, ed., Springer-Verlag, Berlin,
pp. 201–208. xxx.lanl.gov/quant-ph/9904050

The Thirteenth Floor. (1999). Directed by Josef Rusnak. Distributed by Columbo pictures.
Toffoli, T. (1982). Physics and computation.International Journal of Theoretical Physics21, 165–

175.

P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464430 June 12, 2003 18:13 Style file version May 30th, 2002

Debugging the Universe 295

Toffoli, T., and Margolus, N. (1987).Cellular Automata Machines: A New Environment for Modeling,
MIT Press, Cambridge, MA.

Toffoli, T., and Margolus, N. H. (1990). Inversible cellular automata: A review.Physica D45, 229–
253.

Toffoli, T., and Margolus, N. (1991). Programmable matter: concepts and realization.Physica D47,
263–272.

Vichniac, G. Y. (1984). Simulating physics with cellular automata.Physica D10, 96–116.
von Neumann, J., and Burks, A. (1966).Theory of Self-Reproducing Automata, University of Illinois

Press, Champagne.
Wolfram, S. (1986).Theory and Applications of Cellular Automata, World Scientific, Singapore.
Wolfram, S. (2002).A New Kind of Science, Wolfram Media, Champaign, IL.
Wood, G. (2002).Living Dolls: A Magical History of the Quest for Mechanical Life, Faber,

London.
Zuse, K. (1982). The computing universe.International Journal of Theoretical Physics21, 589–

600.

